Prof. Amador Martin-Pizarro Übungen: Daniel Palacín

Topologie

Blatt 6

Abgabe: 01.07.2020, 11Uhr

Aufgabe 1 (6 Punkte).

Sei (X, \mathcal{T}) ein topologischer Raum.

- a) Zeige, dass X genau dann lokal zusammenhängend ist, wenn alle Zusammenhangskomponenten einer offenen Teilmenge von X mit der Spurtopologie offen sind.
- b) Zeige, dass jede offene Teilmenge abzählbar viele Zusammenhangskomponenten hat, wenn X lokal zusammenhängend ist und die Abzählbarkeitseigenschaft zweiter Klasse besitzt.
- c) Wie viele Zusammenhangskomponenten besitzt $\mathbb{R} \setminus \mathbb{Q}$ mit der Spurtopologie bezüglich der euklidischen Topologie? Besitzt $\mathbb{R} \setminus \mathbb{Q}$ die Abzählbarkeitseigenschaft zweiter Klasse?

Aufgabe 2 (2 Punkte).

Ist die Menge [0, 1] mit der Spurtopologie bezüglich der Sorgenfrey Geraden kompakt?

Aufgabe 3 (8 Punkte).

Sei $\mathcal{T} = \{\emptyset\} \cup \{U \subset \mathbb{R} \mid 0 \in U\}.$

- a) Zeige, dass \mathcal{T} eine Topologie auf \mathbb{R} so definiert, dass $\{0\}$ eine dichte Teilmenge ist. Ist diese Topologie T_1 ?
- b) Ist $(\mathbb{R}, \mathcal{T})$ zusammenhängend?
- c) Besitzt $(\mathbb{R}, \mathcal{T})$ die Abzählbarkeitseigenschaft erster Klasse?
- d) Besitzt $(\mathbb{R}, \mathcal{T})$ die Abzählbarkeitseigenschaft zweiter Klasse?

Aufgabe 4 (4 Punkte).

Sei $f: X \to Y$ eine abgeschlossene Abbildung topologischer Räume derart, dass jede Faser $f^{-1}(\{y\})$, mit y aus Y, eine kompakte Teilmenge von X ist. Zeige, dass für jede kompakte Teilmenge K aus Y das Urbild $f^{-1}(K)$ kompakt in X ist.

Hinweis: Endliche Durchschnittseigenschaft.

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN (BITTE ALLE NAMEN EINTRAGEN!) ABGABE DER ÜBUNGSBLÄTTER IM ILIAS ALS EINE EINZIGE PDF-DATEI.